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Abstract

Purpose—This study compares the frequency and severity of head impacts sustained by football 

players on days with and without diagnosed concussion and to identify the sensitivity and 

specificity of single impact severity measures to diagnosed injury.

Methods—1,208 players from eight collegiate and six high school football teams wore 

instrumented helmets to measure head impacts during all team sessions, of which 95 players were 

diagnosed with concussion. Eight players sustained two injuries and one three, providing 105 
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injury cases. Measures of head kinematics (peak linear and rotational acceleration, Gadd Severity 

Index (GSI), Head Injury Criteria (HIC15), change in head velocity (Δv)) and the number of head 

impacts sustained by individual players were compared between days with and without diagnosed 

concussion. Receiver operator characteristic curves were generated to evaluate the sensitivity and 

specificity of each kinematic measure to diagnosed concussion using only those impacts that 

directly preceded diagnosis.

Results—Players sustained a higher frequency of impacts and impacts with more severe 

kinematic properties on days of diagnosed concussion than on days without diagnosed concussion. 

Forty-five injury cases were immediately diagnosed following head impact. For these cases, peak 

linear acceleration and HIC15 were most sensitive to immediately diagnosed concussion (AUC = 

0.983). Peak rotational acceleration was less sensitive to diagnosed injury than all other kinematic 

measures (p = 0.01) which are derived from linear acceleration (peak linear, HIC15, GSI, and Δv).

Conclusions—Players sustain more impacts and impacts of higher severity on days of 

diagnosed concussion than on days without diagnosed concussion. Additionally, of historical 

measures of impact severity, those associated with peak linear acceleration are the best predictors 

of immediately diagnosed concussion.
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INTRODUCTION

In 1999, the National Institutes of Health Consensus Development Panel declared the 

incidence of mild traumatic brain injury (mTBI) had reached epidemic proportions and 

concluded that reducing incidence, severity, and post-injury symptomology should be a 

national priority.(37) Four years later, in response to the increasing number of diagnosed 

cases, the young age of the at-risk population, and the possibility of long-term disability 

from repetitive injury, the National Center for Injury Prevention and Control declared mTBI 

occurring in sports, which is commonly diagnosed as concussion, an important public health 

problem that required an increase in research, treatment, and prevention efforts.(8) Since 

that time, sports-related concussion has become a prominently discussed topic in academic, 

public, and government forums due to an ever-growing body of evidence that concussion 

history may lead to a higher likelihood of developing mild cognitive impairment, clinical 

depression, and early onset of Alzheimer’s disease.(23, 24) It has even been hypothesized 

that the repetitive subconcussive head impacts sustained in contact sports (e.g., football, 

hockey, lacrosse, etc.),(3, 10–12) even in the absence of diagnosed concussion, may 

potentially lead to the deleterious effects of chronic traumatic encephalopathy (CTE), a 

degenerative brain disease with clinical presentation similar to amyotrophic lateral sclerosis 

(ALS) and Alzheimer’s disease.(18)

Developing strategies for preventing concussion has been challenging, primarily due to the 

difficulty in determining the causal relationship between head kinematics and injury. 

Traditionally, laboratory reconstruction techniques using surrogates (i.e., cadaveric 

specimens, animal models, and anthropomorphic test devices) have been employed to 
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replicate the human response to impact.(21, 27, 38) Three primary limitations exist when 

trying to relate measures of head kinematics obtained from laboratory impacts to those 

experienced by athletes who are diagnosed with concussion in sports: 1) sports-related 

concussion is typically diagnosed by signs of neurological or neuropsychological 

dysfunction and self-reported symptomology which cannot be easily deduced from 

surrogates, 2) surrogate tests do not account for the complex system of intrinsic and extrinsic 

variables (e.g., contact force and direction, player physiology at time of impact, equipment 

condition, player anticipation, etc.) that influence kinematic response to impact, and 3) 

single impact events created in the laboratory may be an insufficient injury model 

considering impact and/or injury history may modulate an athlete’s tolerance to impact. 

These variables, which may vary widely for a representative cohort, are impractical to obtain 

and difficult to replicate using traditional laboratory reconstruction.

To overcome these limitations, sporting fields, particularly those for contact sports, have 

been identified as living-laboratories to explore the human response to impact since athletes 

routinely sustain head contact during play.(35) One of the most impact-rich sporting 

environments is American-style football. In this sport, concussion is the third most common 

game injury with nearly 5% of all players diagnosed with concussion per season and 15% of 

those injured athletes diagnosed with multiple concussions in the same season.(13, 26) To 

leverage the large sample size, high frequency of impacts, and high potential for injury, 

Head Impact Telemetry (HIT) technology (Simbex, Lebanon NH) was developed to record 

head impact exposure (frequency, location, and kinematics of head impact) sustained during 

play.(9, 15) Using this technology, Duma et al. first reported the aggregate head impact 

exposure of 38 collegiate football players over a single season, one of whom sustained a 

concussion.(15) Since that time, the same general methodology has been used in numerous 

studies to quantify the kinematics of head impact across several athletic populations.(5, 10–

12, 33, 41)

While the pathomechanics of head impact exposure leading to concussion diagnosis still 

remains unclear, several studies have provided preliminary insight into the relationship 

between on-field measures of head impact and diagnosed injury. Guskiewicz et al. first 

postulated,18 and recently concluded,17 that it may be difficult to identify a threshold for 

concussion after observing wide variation in head acceleration recorded prior to 13 cases of 

diagnosed concussion in collegiate football players. Greenwald et al. observed similar 

variation in head acceleration when examining 17 impacts associated with diagnosed 

concussion; however, they demonstrated that injury predictions based on measures of head 

impact exposure could be improved by combining impact location, peak head acceleration, 

and impact duration into a single, independent metric through the use of principal 

component analysis.(20) Similarly, Broglio et. al found measures of head acceleration prior 

to diagnosed concussion were similar between high school and collegiate football players, 

and a combination of linear acceleration, rotational acceleration, and impact location best 

differentiated 13 impacts associated with injury from head impacts not associated with 

injury.(5) Alternatively, Rowson et al, suggested the lack of specificity of these measures to 

injury was due, in part, to under-reporting and were able to develop injury risk curves using 

estimates of injury prevalence and both linear and rotational acceleration distributions for 

impacts associated with and without injury.(39, 40) They went on to show that risk curves 
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based on simple biomechanical parameters have a high level of power for predicting 

concussions when compared to epidemiological data.(16) While insightful, one significant 

limitation of these initial studies is the relatively small sample of recorded head impacts 

associated with diagnosed concussion used in their respective analyses.

To overcome sample size limitations, we have collectively pooled the injury cases recorded 

with helmets instrumented with HIT System technology across multiple institutions and 

studies.(5, 20, 25, 41) With this much larger retrospective data set, we aim to elucidate the 

biomechanical basis of mild traumatic brain injury in American-style football. The purpose 

of this study is to compare two components of head impact exposure (frequency and 

kinematic response) on days with and without diagnosed concussion and to identify the 

sensitivity and specificity of single impact severity measures to diagnosed injury. 

Specifically, we tested the hypotheses that individual players will sustain more impacts and 

impacts of higher severity on days of diagnosed concussion than on days without diagnosed 

concussion. Through this analysis, we begin the process of identifying components of head 

impact exposure that best correlate with diagnosed injury, which provides quantitative data 

from which protective equipment and safety standards can be developed and could 

potentially lead to both rule changes to mitigate at risk behavior and new methods for 

identifying impaired athletes who, using current gold-standard methods, go undiagnosed.

PARTICIPANTS AND METHODS

Participants

Over a six year period (2005 – 2010), 1,208 players from eight collegiate and six high 

school football teams wore instrumented helmets (Head Impact Telemetry (HIT) System, 

Simbex, Lebanon, NH) to measure head impacts during practices, games and scrimmages – 

designated as team sessions. Yearly participation by each organization, as well as inclusion 

for each individual within the organization, was voluntary with no consideration given to a 

player’s previous history of concussion or playing position. Because instrumentation was 

only available for Riddell helmets, participation was limited to subjects already wearing 

VSR-4 (24%), Revolution (72%), or Speed (4%) helmet models. A total of 673 players were 

instrumented during multiple years providing a yearly subject pool of 230 players from 6 

teams in 2005, 330 and 550 players from 11 teams in 2006 and 2007, and 422, 426, and 352 

players from 8 teams in years 2008–2010. At all institutions participating in the research, 

approval for data collection and reduction was received by an Institutional Review Board 

and informed consent was obtained, including parental consent in the case of minors.

Helmet Instrumentation

Instrumented helmets were used to continuously monitor the head during all competitive 

activity and record head acceleration in real-time following impact. The HIT System is 

comprised of an in-helmet data acquisition system, a sideline transceiver, and a laptop 

computer.(10, 15) The in-helmet unit positions six, single-axis accelerometers (Analog 

Devices, MA) against a player’s head providing isolated head acceleration measures.(28) 

Prior to use, all helmet model and size (M, L, XL) combinations were tested to meet on-field 

use requirements that included meeting standards set by the National Operating Committee 
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for Standards of Athletic Equipment. During play, when any accelerometer exceeded a 

14.4g threshold, 40 ms of data were recorded [8 pre-trigger and 32 post-trigger, 10 bit, 1000 

Hz per channel], time stamped, and transmitted wirelessly (903–927 MHz) to a transceiver 

and laptop computer positioned on the sideline. Communication range typically exceeds 200 

yards; however, in the event of poor communication, each unit was capable of storing up to 

100 impacts in non-volatile memory to minimize the potential for data loss. To verify the 

accuracy of on-field data collection, processing, and reduction, a multi-phase validation 

process was conducted which included laboratory testing,(2, 9, 15, 28) video correlation of 

on-field events,(7, 15, 34) and multi-site field trials.(5, 10–12, 15, 33, 41)

Clinical Diagnosis

During the period of study, concussion was generally defined as an alteration in mental 

status, as reported or observed by the player or team’s medical staff, resulting from a blow 

to the head which may or may not have involved loss of consciousness. For all cases of 

injury, a certified athletic trainer (ATC) or team physician at each respective institution 

diagnosed and treated the injury at their professional discretion. Following symptom 

resolution, the medical staff provided the date of injury, the suspected time of injury, the 

approximate time of diagnosis, day of symptom resolution, and player anthropometrics (age, 

height, and weight). Additionally, anecdotal descriptions of the events surrounding injury 

(e.g., description of the impact, method of identifying the injury, and on-field observations 

regarding clinical presentation) were provided by each team when available.

Data Reduction

Impact location and linear and rotational acceleration of the head center of gravity (CG) 

were computed for each impact from acceleration data collected with the instrumented 

helmets.(9, 40) Events recorded outside of an organized team session (practice, scrimmage, 

or game) or with peak linear acceleration below 10 g were removed prior to analysis, as 

these were considered to be outside of the measurement range of the device. (10, 33, 36) 

Other identified non-head impact related events, such as throwing a helmet, were also 

removed from the dataset.

From the processed acceleration data, measures of impact kinematics available for analysis 

included the peak magnitude of linear and rotational acceleration and three additional 

metrics calculated from the linear acceleration time series data: Gadd Severity Index (GSI),

(17) Head Injury Criteria (HIC15),(43) and change in head velocity (Δv). Additionally, the 

total number of daily head impacts sustained and the number of head impacts above the 50th 

and 95th percentile values of peak linear and rotational acceleration for all players were 

calculated. The percentile cutoff values for peak linear acceleration (50th = 20.5 g, 95th = 

62.7 g) and peak angular acceleration (50th = 981 rad/s2, 95th = 2,975 rad/s2) were 

previously reported by Crisco et al(11) and Rowson et al,(40) respectively.

Statistical Analysis

Only impacts sustained by athletes diagnosed with concussion during the period of study 

were considered for the purposes of this analysis (Figure 1). For each kinematic measure, 

the median (50th percentile) and 95th percentile levels for these individual players on days 
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with and without diagnosed concussion were calculated. Results were expressed as median 

values and 25–75% interquartile range. A Wilcoxon signed-rank test for matched pairs was 

used to test the significance between the 50th and 95th individual player percentiles on days 

with and without diagnosed injury because the study variables were not normally distributed 

(Lilliefors test; p < 0.001). Similarly, distributions of impact frequency were skewed 

towards lower occurrence (Lilliefors test; p < 0.001), so the same method was used to test 

the hypothesis that a greater number of impacts per player occur on days of diagnosed 

concussion than those without diagnosis. This analysis was performed using all impacts as 

well as only with impacts greater than the 50th and 95th percentile acceleration levels to 

determine if differences exist even when only considering the highest magnitude impacts.

Receiver Operator Characteristic (ROC) curves were generated to evaluate the sensitivity 

and specificity of single impact severity measures to diagnosis of concussion. Impacts 

recorded immediately before a player was removed from participation and diagnosed with 

concussion were defined as immediate diagnosis impacts and used as positive ROC input. 

Negative ROC input cases were designated as all impacts for the concussed players 

occurring on days without diagnosis of concussion. For each ROC curve, the null hypothesis 

of the true area under the curve (AUC) equaling 0.5 (same as guessing), was tested and an 

asymptotic significance value (P value) is reported. Hanley’s method for comparing area 

under ROC curves was used to test if any of single impact severity measures were more 

sensitive to diagnosed concussion than peak linear acceleration.

Binary logistic regression was conducted to determine the odds ratios for concussion risk 

relative to incremental increases of each impact severity metric. This method determines 

how much the potential for diagnosed injury increases based on the measured severity and 

the presence or absence of clinically-defined injury following impact. Again, immediate 

diagnosis impacts were used as positive input into the analysis and all impacts sustained by 

concussed athletes on days without diagnosis was used as negative input. Results of this 

analysis include the regression coefficients (α, β), standard error of the regression 

coefficient, the Wald statistic used to test the significance of each regression coefficient, the 

odds ratio, and the 95% confidence interval of the odds ratio.

All statistical analyses described above were performed with custom Matlab scripts (version 

7.11, The MathWorks Inc., Natick. MA) in combination with built-in statistical toolbox 

functions. A significance level of α = 0.05 was set a priori for each of the statistical tests.

RESULTS

161,732 head impacts were recorded over 10,972 player days from 95 athletes clinically 

diagnosed with mTBI (Figure 1). Eight of the subjects sustained two diagnosed concussions 

and one had three, yielding 105 identified cases of injury. The median reported age, height, 

and weight of all concussed athletes was 19.2 ± 2.2 yr (15 – 23 yr), 183.5 ± 6.7 cm (165.1 ± 

198.1 cm), and 94.6 ± 16.3 kg (63.5 – 138.8 kg) respectively. Collegiate athletes accounted 

for 68 of the diagnosed injuries with the remaining 37 sustained by high school players. 

Seventy of the cases (66.6%) occurred during games or scrimmages with the remainder 

occurring during practices The time of symptom resolution was reported for 89 of the 105 
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cases, and, of these, symptoms resolved in a mean of 5.9 ± 7.4 days (range: 15 min to 59 

days) from the reported time of injury.

Kinematic measures for head impacts sustained on days with diagnosed concussion were 

higher than on days without diagnosed concussion (Table 1). Statistical significance was 

observed for both the 50th and 95th levels for all kinematic measures except 50th percentile 

rotational acceleration (p = 0.08; Table 1). On days when injury occurred, athletes also 

sustained a greater number of head impacts than on days when no injury was diagnosed 

(Figure 2). The difference was found to be significantly different when considering all 

impacts as well as those with peak linear acceleration greater than the 50th and 95th 

percentile of all impacts (p < 0.001; Table 2).

In 45 of the injury cases (43%), the player did not continue playing following an impact that 

directly preceded diagnosis of concussion. In the other 60 cases, the player was not 

immediately removed from play, and the diagnosis did not occur until either later that day or 

in the following days because the signs and symptoms of injury were either not immediately 

recognizable or the player did not self-report. These 60 cases of delayed diagnosis were 

excluded from both ROC and logistic regression analysis due to the potentially confounding 

factor of sustaining additional head impacts after onset of symptoms.

Impacts sustained prior to immediately diagnosed concussions had mean severity of 112.1 ± 

35.4 g peak linear acceleration, 4,253 ± 2,287 rad/s2 peak rotational acceleration, 321.5 ± 

239.4 HIC15, 439.3 ± 315.2 GSI, and 4.29 ± 1.71 m/s change in velocity. The area under the 

ROC curves generated for each severity measure (0.921 – 0.983) were statistically higher 

than 0.5 (p < 0.001), indicating that all measures of severity are better than guessing 

outcome of diagnosed concussion (Figure 3). Peak linear acceleration and HIC15 were most 

sensitive to immediately diagnosed concussion (AUC = 0.983), but, this was not 

significantly different than either GSI (AUC = 0.982) or change in head velocity (AUC = 

0.980). The only severity metric significantly different from peak linear acceleration was 

peak rotational acceleration, which had a lower sensitivity to immediately diagnosed 

concussion (AUC = 0.921; p = 0.019).

The odds ratios and associated 95% confidence intervals provided in Table 3 indicate the 

increase in odds of sustaining a diagnosed concussion for a single unit measure increase of 

each severity metric. For example, a 1g increase in linear acceleration corresponds to a 

1.052 greater odds of sustaining an immediately diagnosed concussion, or, more practically, 

a player has 10.3 times greater odds of sustaining an immediately diagnosed concussion 

following a mean 95th percentile impact (84.9 g) than a mean 50th percentile impact (38.9 g) 

since the increase in odds equals the odds ratio raised to the power of change in a single unit 

measure (ex. odds increase = odds ratio (Top 95th – Top 50th)).

DISCUSSION

On days of injury, 95 athletes with one or more diagnosed concussions sustained impacts 

with higher associated kinematic response than on non-injury days. Because many 

individual factors (e.g., style of play, playing position, team tendencies, etc.) could influence 
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susceptibility to injury, it is interesting to note that on days without injury, these players 

sustained head impacts typical for all football players. The 50th and 95th percentile peak 

linear (20.7 g and 63.5 g) and rotational (848 rad/s2 and 2,761 rad/s2) accelerations recorded 

on non-injury days were nearly identical to those reported by Crisco et al. (20.5g and 62.7g) 

and Rowson et al (981 rad/s2 and 2,975 rad/s2) who employed similar methods to quantify 

the head impact exposure of collegiate football players who were not diagnosed with 

concussion from three collegiate football teams over three years. This comparison is 

especially compelling considering the injured athletes evaluated in this study came from a 

larger range of seasons, a higher number of teams, and is inclusive of both high school and 

collegiate players. Given the relatively large sample of injury cases presented in this 

analysis, it is clear that a significant distinction exists between kinematics sustained on days 

with concussion and other days of play. These in-vivo measures of head acceleration 

represent a foundation of quantitative data that can be used to develop future protective 

equipment and test standards for that equipment. Additionally, because head impact 

kinematics on days without concussion appear to be similar for all athletes (both those who 

were never diagnosed and those who were), the differences identified suggest that 

implementing a procedure to screen athletes for injury based on daily head impact exposure 

could lead to increased injury detection.

Similarly, and may be less intuitive because injured athletes are commonly removed from 

competition, athletes sustained more head impacts on days with diagnosed injury than on 

days without diagnosis. Athletes also sustained more impacts above the 50th and 95th 

percentile levels of peak linear and rotational acceleration on days of diagnosed concussion, 

with the median number of highest severity impacts ranging between 2.0 – 2.85 times higher 

on days of injury. These data indicate that players not only experienced more head impacts 

on days of diagnosed concussion, but they also sustained more high severity head impacts 

on these days. Previously, pilot studies have suggested a link between the number of head 

impacts sustained and in-season cognition;(1, 42) however, there has been little evidence 

suggesting that impact frequency is predictive of concussion. While it is still unclear if 

multiple impacts pre-dispose an athlete to injury (i.e. high number of impacts lowers a 

player’s threshold of injury) or if the athlete simply has a higher risk of injury from a single 

event due to the higher number of impacts sustained, it is clear that the number of impacts a 

player sustains is a key measure to consider when evaluating the link between head impact 

and injury. This finding, combined with several previous studies showing impact frequency 

is related to several factors including team, playing position, skill level, and session type, (6, 

10, 11, 33, 41) suggest that injury mitigation strategies, such as rule changes to limit head 

contact, can be developed to reduce the occurrence of concussion in sports.

In a 2007 report, Schnebel et al. provided a detailed description of two diagnosed cases of 

concussion and highlighted the difficulty of associating an injury diagnosis with a single 

impact.(41) Issues that confound this association include multiple impacts occurring within 

a short period of time, symptoms that either resolve quickly or only become pronounced 

over time, and, most importantly, the reliance on a player’s self-report to initiate the medical 

evaluation. More than half of the diagnosed concussions reported in this study were not 

immediately identified by the team’s medical staff, and, in the majority of cases, went 

undiagnosed until after play had ended. To mitigate uncertainty, we limited our analysis of 
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injury risk to only those impacts sustained immediately prior to diagnosis of concussion as 

positive cases and all impacts for those players sustained on days without diagnosis of 

concussion as negative cases. By focusing solely on impact events with clearly discernible 

outcome, risk estimates presented within this study most likely underestimate risk of 

sustaining any concussion due to the exclusion of cases with delayed diagnosis. In addition, 

it has been estimated that up to 50% all head injuries in football go un-diagnosed,(31) and 

preliminary findings have been presented that indicate a sub-set of athletes exists who 

experience in-season cognitive decline without experiencing abnormal symptomology.(1) 

Because of this, the risk estimates presented here are defined as the risk for sustaining an 

immediately diagnosed concussion rather than the risk of sustaining any concussion or signs 

and symptoms of a concussion. Differences in head impact exposure between cases of 

immediate and delayed injury diagnosis were not evaluated directly; however, this will be 

the subject of future communications.

While the risk estimates presented in this study are limited to those of immediately 

diagnosed concussion, it is still valuable to compare these results to historical studies of 

traumatic brain injury to evaluate commonly accepted theories. In the 1950–60’s, Gurdjian 

et al. first observed a relationship between an impact event and clinical indicators of TBI 

through a series of tests conducted on anesthetized canines and human cadavers.(22) From 

these experiments and supplementary data, a brain injury tolerance curve was created, 

known as the Wayne State Tolerance Curve (WSTC) that relates brain injury to linear head 

acceleration and duration.(21, 27) The WSTC is the basis for both GSI and HIC15 which are 

still used today in the development and standardization of head injury protective devices for 

both the automotive and helmeted sports industries. Though it has long been accepted that 

both peak acceleration and duration play a role in brain injury, it is interesting to note that, in 

our study, no statistical difference was found between peak linear acceleration and either 

GSI, HIC15, or Δv when assessed as a predictor of immediately diagnosed. One probable 

reason for this finding is that head impacts in football typically have very similar temporal 

characteristics (duration of 8.99 ± 3.01 ms)(6) and the associated injuries are less severe, 

making the data set described in this study more homogenous than the one used to develop 

the WSTC, which included injuries ranging between skull fracture and loss of consciousness 

following [linear] acceleration durations ranging between <0.001 – 0.60 ms.(27) While this 

does not discredit the role of impact duration to concussion in general, it does appear that the 

magnitude of linear acceleration without the inclusion of a temporal component is sufficient 

for differentiating impacts associated with concussion from those that are not when 

considering only head impacts sustained within a single helmeted sport.

While many studies have shown that rotational acceleration is the most likely cause of 

diffuse axonal injury, historical literature on this association is primarily derived from 

animal surrogates undergoing pure rotational acceleration (i.e., whiplash events).(19, 29) 

These data have been supported for humans by simulating brain tissue deformation 

following impact with finite element brain models and associating resulting measures of 

strain with the input kinematics.(44) The question still remains, however, if these surrogate 

data apply to the impact scenarios occurring in a sports environment. While the mechanism 

of injury cannot be assumed, studies focusing on impacts sustained during football have 

shown that combining rotational acceleration with other impact measures such as linear 
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acceleration and impact location increases the specificity of injury prediction;(5, 20, 44) 

however, for this analysis, we chose to treat each impact measure independently for the 

purpose of developing single measure ROC curves. While the predictive capabilities of peak 

linear acceleration and measures derived from the linear acceleration resultant were not 

found to be statistically significant, peak rotational acceleration was found to be the least 

sensitive of all evaluated severity measures to immediately diagnosed concussion. At this 

time it is unclear why a discrepancy exists between the evidence that rotational acceleration 

is the cause of brain injury and yet it is the least predictive measure of immediately 

diagnosed concussion. These results could indicate a discrepancy between the 

pathomechanics of injury previously explored in the laboratory and the injury being defined 

as a concussion in helmeted sports,(14) or that the association between individual kinematic 

parameters and injury could simply be masked by the correlated relationship of these 

parameters in a football head impact.(40)

There are several potential limitations of this study. First, all concussions were diagnosed by 

a trained medical professional using their clinical judgment and best practice guidelines at 

the time of injury; however, it has been well established that concussion symptoms 

frequently go unreported.(8, 31) It has also been shown that some players may experience 

cognitive change without any perceived symptomology.(1, 30, 42) While we can be 

reasonably assured that athletes diagnosed with concussion sustained an injury, the converse 

cannot be assumed. By limiting our analysis to head impacts sustained by players with at 

least one sustained concussion, we limit the potential for underestimating concussion while 

maintaining a large “control” sample of impacts not associated with injury, thus providing 

what we believe to be a robust estimate for risk of diagnosed concussion. To overcome this 

limitation in the future, additional methods for screening athletes on a consistent basis 

throughout the season could be implemented to evaluate in-season clinical presentation (i.e., 

presence / absence of signs and symptoms typically associated with concussion) rather than 

focusing solely on clinical diagnosis. Secondly, data were not analyzed separately by subject 

demographic information (e.g., playing position, high school vs. college, helmet type, etc.). 

While it has been shown that demographic-specific trends for head impact exposure exist 

between and within athlete populations,(3, 6, 15, 33, 41) it is important to note that 

frequency, location, and the kinematic response to head impact is highly dependent on an 

individual player.(10–12) For example, collegiate football players tend to sustain more 

impacts over the course of a season and impacts resulting in higher head acceleration more 

frequently than high school players; however, the range of head impact exposure athletes 

experience is quite large, so it is quite common for individual high school players to sustain 

impacts at a frequency and acceleration level that is on par with collegians.(4) Because 

sports-related concussion is a highly individualized and complex pathophysiological 

process,(32) our initial focus was to determine the head impact exposure measures most 

associated with injury for individual players. This within-subject design provides a better 

understanding of the biomechanical variables most related to diagnosed concussion, 

independent of these extrinsic factors that may have contributed to the level of exposure 

each athlete experienced. Moving forward, the results from this study can be combined with 

typical head impact exposure profiles already established for non-diagnosed athletes to 

determine if different conditions of participation place an athlete more at risk for injury. 
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Through this approach, strategies for injury mitigation can be developed. Finally, the study 

design employed was not epidemiological in nature and only tracked cases of diagnosed 

concussion for athletes while wearing instrumented helmets. Because of this, readers should 

be careful not to estimate concussion rates from the data presented or interpret concussion 

risk based on the occurrence of injury by specific demographic information alone.

To the authors’ knowledge, this work presents the largest collection of in vivo 

biomechanical head impact data associated with diagnosed concussion to date. The key 

findings of this initial communication indicate that players sustain both a greater number of 

impacts and impacts of higher severity on days of diagnosed concussion than on days 

without diagnosed concussion. Additionally, kinematic measures associated with peak linear 

acceleration are similar predictors of immediately diagnosed concussion while predictive 

capability of rotational acceleration is significantly lower. While further analysis is required, 

the data introduced in this study provides a foundation for identifying the biomechanical 

basis of head injury from which future communications will build upon.
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Figure 1. 
Hypotheses tested within this communication are based on a subset of biomechanical and 

clinical data that was collected as part of a longitudinal study to investigate the 

biomechanical bases of mild traumatic brain injury. Data reported in this study are derived 

from the samples highlighted in the above flowchart.
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Figure 2. 
Number of impacts per day (all, > 50th percentile, > 95th percentile linear acceleration) for 

players on days with and without diagnosed concussion.
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Figure 3. 
Receiver Operating Characteristic (ROC) curves indicating the sensitivity and specificity of 

historical measures of impact severity. A 50% probability line is included to indicate the 

level of guessing (50 – 50 chance). Peak linear acceleration and HIC15 are the most sensitive 

single impact measures to immediately diagnosed concussion followed by GSI, change in 

velocity, and peak rotational acceleration. The horizontal axis is reduced to highlight only 

the top 90th percentile of all impact events which is inclusive of most impacts associated 

with injury.
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Table 2

Median [25–75% interquartile range] number of head impacts for individual players sustaining at least one 

diagnosed concussion on days with and without injury diagnosis. Athletes sustained more total impacts and 

more impacts with high kinematic response (top 50th and 95th percentile) impacts on days with diagnosed 

concussion than days without diagnosed concussion.

Number of Daily Head Impacts Clinical Diagnosis P Value

No Concussion Concussion

> Linear 95% a 0.7 [0.4 – 1.2] 2.0 [1.0 – 3.0] < 0.001

> Rotational 95% b 0.5 [0.3 – 0.8] 1.0 [1.0 – 2.0] < 0.001

> Linear 50% a 7.2 [4.6 – 10.2] 10.0 [6.0 – 18.8] < 0.001

> Rotational 50% b 5.9 [3.7–7.9] 9.0 [4.3 – 16.0] < 0.001

All Impacts 13.8 [9.4 – 18.9] 21.0 [12.0 – 36.8] < 0.001

a
50th and 95th percentile linear acceleration = 20.5 and 62.2 g

b
50th and 95th percentile rotational acceleration = 981 and 2,975 rad/s2
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